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ABSTRACT 

Non-stationary, homogeneous, isotropic turbulence is considered 

from the point of view of the renormalization group. The turbulent 

motion is generated by a pulse of random forces. The connection between 

this description and that where random boundary conditions are given is 

made explicit. The behavior of the correlation function of the forces at 

small wave number is discussed. Within the linearized version of the 

Navier-Stokes equation, the final period of decay is governed by that cor- 

relation function. When the correlation function vanishes as k2, the 

Batchelor-Proudman (1956) hypothesis of analyticity of the velocity cor- 

4 
relation function is satisfied and E(k, t) - k for small k in three space 

dimensions. When the correlation function is finite at k2 = 0, the 

Saffman (1967) hypothesis of analyticity of the vorticity correlation func- 

tion is satisfied and E(k, t) - k2 for small k in three space dimensions. 

This is what the idea of equipartition would suggest. The renormalization 

group program is set up for non-stationary turbulence is set up and it is 

demonstrated that in both the Batchelor-Proudman and Saffman cases, 

the effective expansion parameter (Reynolds number) for the non-linearity 

of the Navier-Stokes equation vanishes as k2 + 0, so that the use of the 

linearized equation to study the final period of decay is justified. The 

renormalization group analysis necessary for the construction of the 

velocity correlation function <vj(ji’, t)vP (O,T)> is given in some detail. 
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I. INTRODUCTION 

This is part of a series of papers devoted to the use of re- 

normalization group techniques in the study of isotropic, homogeneous 

turbulent flow. The idea of the renormalization group is to provide a 

quantitative assessment of the importance of the non-linearity in the 

Navier-Stokes equation. This is done via an effective Reynolds number 

whose magnitude depends on which wave number regime one is examining. 

Previously (Abarbanel, 1978 a, b) we have examined stationary, 

homogeneous, isotropic turbulence using renormalization group methods 

and found that the equations of the renormalization group allow one to 

reconstruct velocity correlation functions for all wave numbers using a 

systematic approximation scheme for the functions determining the re- 

normalization of the viscosity and of the strength of the inertial terms in 

the Navier-Stokes equation. To maintain stationary homogeneous, iso- 

tropic turbulence one must drive it by random external forces (Monin 

and Yaglom, 1975, Section 19.6). The motion is very much determined 

by the properties of the correlation functions of those external forces. 

Several models for the small wave number variation of those correlation 

functions were examined both by the present author and by Forster, 

Nelson and Stephen (1977). We found that in each of these cases the 

effective Reynolds number vanishes for k-m, the far dissipation region, 

and either goes to a small, finite constant as k- 0 or actually goes to 

zero in that limit. This gave some confidence in the construction of the 
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velocity correlation functions using the effective Reynolds number as the 

expansion parameter. 

Here we will generate the turbulent motion by a finite length pulse 

of random forces and then examine the decay after the forces are turned 

off. The use of random forces to generate the random initial velocity 

distribution was discussed some time ago by Saffman (1967). He used a 

delta function pulse. Our use of a finite time pulse allows us to study an 

interesting difference in the small k behavior of the two-fold velocity 

correlation function between stationary and non-stationary turbulence. 

Furthermore, by discussing the final period of decay of turbulence we 

are able to relate hypotheses about the analyticity of the velocity cor- 

relation function in wave number (Batchelor and Proudman (1956) and 

Saffman (1967)) to the behavior of the correlation function of the random 

forces at small wave number. Since we will show below that in the 

problem of freely decaying turbulence the effective Reynolds number as 

k- 0 goes to zero, the use of the linearized theory by these previous 

authors is justified and the connection is precise. 

To be more explicit, we will consider random forces operating 

between some initial time -Ti and a final time Tf. During that time 

these forces are &-function correlated in time and taken to be gaussian 

random fields with zero mean. The correlation function is written as 

2 
YO 

<Fj&)F; (a. w’)> = (z~)~b~(iT - c) 4 rm 
dTei(w -w’)T 

A. (W, 
JJ- 

(1) 
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with A. (k) = 6. - k.k /kz I 
11 JP Jf 

where Fj$,w) is the fourier transform of the force field driving the fluid; 

D is the number of space dimensions; yi/4 is the strength of the cor- 

relation; and Im(k 2 2 /kO) is a dimensionless measure of the wave number 

variation of the correlation function on the external scale, k 
0’ of the mix- 

ing forces. We will show that if Saffman’s hypothesis is correct, namely 

analytic behavior in k of the vorticity correlation function, then rm(0) $0. 

This is Model B of Forster, et al. and the one argued for on physical 

grounds by the author. If the velocity correlation function is analytic, 

then Im(q2) = q2 hm(q2) with h,(O) $0. This is Model A of Forster et al., 

and,as explained by them,in some ways is a more attractive situation 

physically. A discussion of the two cases will be given below. 

The paper is organized as follows: In the next section I will discuss 

the behavior of turbulent motion generated by a random force pulse and 

make the connection between this description and that of giving an initial 

random velocity distribution. Next using the linearized Navier-Stokes 

equation I examine the connection of the energy spectrum function E(k, t) 

with the correlation function of the random mixing forces generating the 

turbulent motion. The. relation between the behavior of rm(k2/ki) near 

k2 = 0 and the Batchelor-Proudman or Saffman hypotheses is given then. 

Arguments are given to support Saffman’s hypothesis. In Section III 

perturbation theory for the construction of velocity correlation functions 
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is given for the non-stationary situation. We will discuss the behavior 

of the effective expansion parameter (Reynolds number) and show that it 

goes to zero in the k 
2 

-0 limit, SO that the use of the linearized Navier- 

Stokes equation to study the final period of decay is justified. In the 4th 

Section we use renormalization group methods to construct the velocity- 

velocity correlation function; this is an application to the present problem 

of the ideas in Abarbanel (197813). Finally a summary and discussion ends 

the paper. 

II. GENERATING THE TURBULENT MOTION 

We begin by considering the Navier-Stokes equation with a given 

initial condition, vj(c,T), on the velocity field at wave number k’ and 

time T. As usual the goal is to solve the equations of motion 

(; + v. k2)vj(h = Mjpn Cr;‘) 
/ 

-$ VI (p’,tb$-&t) > (3) 

subject to the given boundary condition. In this equation y. is the 

kinematic viscosity, 

Mjmn(c) = - ; (Ajm (k) kn+ Ajn(k) kp ) > (4) 

and we are working in D space dimensions. We want to take the laplace 

transform now with respect to t, so let 
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m 

Wj(i;. s) = dt e 
-st 

Vj(& t) > 

snd (3) becomes 

(5) 

(s+ v. k2) “~(2, s) = e -st vj’c, T) 

do 
K wp(izdwnG-~,s-u), (6) 

and Re c is taken to the right of the singularities in s of wj (p’, s). 

The initial velocity field has some distribution which is the 

embodiment of the stochastic nature of the turbulent motion. The 

solution of (6) will lead to expressions for the averages 

<w. (i;l'sl)... wj 
Jl 

Gn'Sn)> I 
n 

(7) 

which depend in detail on the distribution of vj$,T) (see Orzag (1974), 

Section 4.3). We wish here to replace the initial velocity distribution by 

a distribution of the random forces which generated the motion. This is 

a formal device which is useful when we want to make contact with the 

previous work on stationary turbulence [Abarbanel (1978 a, b), Forster, 

Nelson, and Stephen (1977)]. So we suppose that the random force 

fj(x, t) acts over a very short time interval from, say, t=O to t=T. 

Then, following Saffman (1967) we may write 
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and 

dv. 
--$ (;,t) = f 

e 1 

T 

vj6,T) = dt Fj(g, t) . 

(8) 

(9) 

We will take these random mixing forces to be Gaussian with zero 

mean and b-function correlated in time while they act. So we choose 

2 

<Fj(;,t) F&T)> = 2 Aje(V)F(k;(xt-;;)‘) 6(t-T), 

where 

Aje(“)=6. 
Je 

- 1 VjVe , 
V2 

(10) 

(II) 

expresses the solenoidal nature of the forces which are relevant to 

incompressible fluids. 
2 

YO is a measure of the strength of the forces, 

and - 22 F(k -1 
0 

x ) tells how the forces are correlated in space. k 
0 

1s an 

external length scale characteristic of the mixing forces. The correla- 

tion of the velocity field at t = T is 

2 

< v.(x’, T) ve (F, T)> = 
J 

T Aje(V)+;(~-;)2 , (42) 

which gives the explicit relation between the distribution of initial 

velocities and the distribution of the mixing forces creating them. 

Saffman considered an infinitesimal pulse which requires us to take the 

limit T-O with y:T held fixed. 
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Now that we see the equivalence of discussing turbulent motion in 

terms of initial velocity distributions of or random mixing forces, we 

will adopt the latter for the remainder of this paper. We will suppose 

that the force is turned on at some initial time -Ti and turned off later 

at T f. The stationary turbulent motion discussed previously is recov- 

ered by taking the limit Ti, Tf + m at the beginning. We want the forces 

stirring the fluidto, act so they are b-function correlated in time, and 

we generalize (10) to 

2 

<Fj&t) F$. T)’ = z Aje (V)r(k;Cg-y)‘) 6(t - +3(t+Ti)B(Tf - t). (13) 

The next question we want to address is the behavior of the mixing 

strength 

Fm(k2/k;) =/ dDx ?(k;,x2)e,-iG”, (14) 

at small wave numbers. To look at this we assume that for long times 

after the mixing force has been turned off, t >>T f’ the turbulence has 

decayed sufficiently to allow us to use the linearized version of the 

Navier-Stokes equation. This hypothesis will be justified by the renor- 

malization group analysis below. We want the two-fold velocity correla- 

tion function 

a!2’o) 

9 
ct, T, i;, 

(15) 

(16) 

/ 

+-a 

dDx e 
ik * x = <vj(z,t, Ve(Oa T)> 

= Aja (k) QC2”)(t, -r, k2), 
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which is related to the energy spectrum function by 

(17) 

with ixD = 2ir D'2/r(D/2,. 

From the linearized Navier-Stokes equation we have 

-iwt iw’t 
e X 

2 

x + rm (k’/k;) 
1 Tf 

/ 

i(0 -w’)p 

(-iw+vOk2)(io:f+vOk2) -T 
dpe (18) 

i 

Let’s consider two cases of this. First, the situation relevant to decay: 

t>Tf. Then from (18) we find 

@W 

-2 vOk2t 

(t&k’) = e 
2vOk2Tf -2vok2Ti 

wok2 
e -e (19) 

The second case is when - Ti < t < Tf, which we study to see how the 

linearized Navier-Stokes theory behaves for stationary turbulence. The 

results will be relevant only when the effective Reynolds number is small 

as k 
2 

-0. In this second case, (18) tells us 

-2vok2(t+Ti) 2 

Q(2$0)(t,t,k2) = ’ -e yO 

2vok2 
r,!k’/k;) 4 . (20) 
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In the case where t > Tf, the behavior of G(2’0)(t,t,k2) at small 

k2 is determined by Im(k2/ki) alone. The factor of 1/2vok 2 is 

cancelled by the numerator. In Saffman’s work where Ti = 0, T 
f 

+ 0 

with yiTf fixed the same is true. If Saffman’s hypothesis that the 

vorticity correlation function is analytic near k = 0 is correct, then 

Im(0) is finite and E(k) behaves as k 
D-l 

. However, if the Batchelor 

and Proudman hypothesis that the velocity correlation function is analytic 

near k2 = 0 is correct, then Im(k2/kE) vanishes as k2 near k2 = 0, and 

we may write 

rmh2) = q2 hm(s2) I h,(O) + 0 . (23) 

The case where Pm(O) $0 has been discussed in Abarbanel (1978b) 

and also in Forster, et al. (1977) (their Model B). From a physical point 

of view there seems to be little reason to doubt the plausibility of this 

behavior and, indeed, the demonstration by Saffman that when Pm(O) + 0, 

2 yoTm(0) is a dynamical invariant gives theoretical creedence to this idea. 

When we adopt the Batchelor-Proudman result, it is well known that the 

energy in the final period of decay behaves as t -512 which has some 

experimental support from Batchelor and Townsend (1948). Saffman 

argues that those experiments on grid turbulence may well give Pm(O) = o 

since there is periodicity remaining in the turbulence from the periodic 

structure of the grid. An experiment with several parallel grids (each 

transverse to the flow, of course) oriented at random angles with respect 
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to each other should eliminate this possible periodicity and allow one to 

decide whether the energy decays as t -512 or t-3/2 (which occurs when 

rm(w + 0). 

From (20) we can now look at the situation for k2 + o in the station- 

ary case by letting Ti, Tf+ m. The absence of Tf in (20) comes from 

causality: since t<T f, the response function <F (2,O) should not know 

of T f. To look at k‘ = 0, however, we need t large, so T 
f 

+m. Now 

2 
Q(2,0) (t,t,k’) = - 

YO 

8vOk2 
rm(k2/k,2) > 

and is independent of t, as it must be. The energy spectrum is 

E(k) - kD-3 Im(k2/ki). 

(22) 

(23) 

In stationary turbulent motion then the Saffman hypothesis leads to 

E(k) -k 
D-3 

for small k, while the Batchelor and Proudman conjecture 

means E(k) -k D-l . 

Forster, et al. (1977) point out that E(k) - kD-’ is a consequence 

of equipartition and phase space arguments. Indeed, one expects their 

observation to hold when the fluid has not recently been forced and is no 

longer responding to the details of how it was mixed. Long into the decay 

period when the unforced motion has had a chance to distribute the energy 

among its degrees of freedom, E(k) - k D-’ is natural . Under those cir- 

cumstances, the arguments above lead one to prefer the Safmmn hypothesis 

that rm(0) + 0. 
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Now the energy contained in the small k region is rather small and 

a discussion of the k - 0 behavior of E(k) might appear to be much ado 

about very little. As noted previously, however, it has some bearing on 

one’s ability to analyze the full k spectrum using the renormalization 

group and since it is experimentally accessible, merits consideration. 

III. PERTURBATION THEORY AND THE RENORMALIZATION GROUP 
FOR NON-STATIONARY TURBULENCE 

Now we would like to construct the velocity correlation functions 

rn+O). 
Jl”‘J, 

(2 t 1’ I’“’ ; t 
n’ n 

) = <Vj (+l) . . . vj Gn,tn” I 
1 n 

(24) 

in a perturbation series in the non-linearterms in the Navier-Stokes 

equation. Then we will use the renormalization group to assess the 

importance of the non-linearity in various regimes of wave number 

space. Some of this material is contained in Abarbanel (1978a) and the 

perturbation series has been given for stationary turbulence by Wyld 

(1961); it is repeated briefly for completeness. 

To generate a perturbation series we write a generating functional 
4 

for the @Is. This involves the Lagrangian density function, 2, for 

the velocity field, and the construction of ..? requires another field 

V. -- the anti-velocity. For 
J 

.s? we have 

2= $ Tj ; vj + v. v, 7 v, vj + Fj 7 + 

- ; (Ajn(v) VP + Aje (V) On) vj 1 vnvl ’ (25) 



-14- FERMILAB-Pub-78/53-THY 

z- aB i3A 
with A - B = A - - - B and F. the random force. 

at at at J 
The perturbation 

series is derived from the generating functional for the n v. and m V. 
3 .I 

correlation functions. This is 

- 
Z[V~,~~] = Idvj6(vnVn)dvj 6(veye)e 

J (y+qjvj +TijVj)dDx dt 
X 

X P[ F] dF, (26) 

where P[F] is the distribution of the random forces. We will take these 

forces to be gaussian with zero mean and correlation function 

2 

<Fj(;,t) Fe&)> = 
YO 
T 6(t - T)A. (V)?’ 

Je 
)~e(t) e(T- t) , (27) 

so the forces only operate over the interval 0 5 t ST. Since P[F] is 

gaussian we can do the integral over F in (26) resulting in 

“‘j,TjjI = JdYJb(Vnvn)dTj a(VeFe)e 

-At jdDMrijvj+ijJT;J) 
> V-8) 

with 

A = dDxdt J [ 
2 

+ 17 (&,t) 
2 j J 

dDyAje(V)? k;(z-$2 
( > 

VO VJ;,t)e(t)e(T-tlq 

- + (Ajn(V) VP +Ajl (V)Vn)yj (;,t) 1 1 . (29) 
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Resealing vj and j to xj = 2~0~ vj and yj = y 1J 
02 j puts a factor y. in 

front of the last term of [29). NOW we may use Z[vj,Tj] to give a rep- 

resentation for the n x, and m X. correlation functions 
J 3 

G!n.m,l 
31..-Jn,~1... m 

d Gl>tl...ii-n,tn;~l,T1 a... ;,a Tm) 

= <xj~‘t,.tl) 
- -- 

..*xjn(Xn*tn) Xm,(Y1.T1)... m q GmJmP 1 

as a power series in yo. 

The ingredients in this power series are the two point functions 

G(*‘l) (i-l& w’) = 1 m dt 
031 ’ 2A.(k) Z-,e 

/ 
i(w -a’+ ic)t 

31 
I 

-iw’+v k 
0 0 

and 

~(210)(i;,w w’) 
rm(k2/k;) 

= 
OJP ’ (-iw+ v. k2)(iw1+ v. k2) 

A, (k) 
31 / 

T 
g ei(o -w’)t , 

0 

and the fusion vertex where xn(ql,wl) joins with x1(q2,02) to form 

‘5’c=ql+; 2,~ =w~ +w2) with the factor 

AjaW kp + AjP(k) ka 1 Aan Apa (q,) . 

(30) 

(31) 

(32) 

(33) 

These are indicated in Fig. 1 where a solid line represents a factor of 

x and a dotted line, a x. The arrows are to keep track of the flow of 
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c and o which are positive to the left. To construct Gjn’ml) draw all . . . 
1 

m 

topologically distinct graphs made out of Gc;:), G(2:o), and the vertex 
0 31 

(33). At each vertex conserve G and 0. Integrate dDq da for each 

independent wave number and frequency. Recall that w is not conserved 

across a GtzJo) line-this is the reflection of the non-stationarity of the 

problem. With each graph associate a weight unity except for closed 

loops containing two G (“O) lines. these have weight i/2. Ojl ’ 

We will require below the value of v(l*‘) defined via 

G;;*l)(i;‘w,wt) = Ajl (k@(‘*i) (k’,w,w’) . (34) 

To lowest non-trivial order in yi we find 

#L1)(k2 ,m,a’, Y o, VO>ko) = 
1 i 1 

2 Z;; w-w’+ie 
+ 

-io’+v k 
0 

2 
YO ei(w - 1 1 w’)T -1 

/ 

dDq r,(s2ik;) xAnP WI 
-- 

4 -iw+v k 2 
0 

-lw,+ y k2 2rrib-d) 
0 m= -iw+v, q +(;-i;) (” “) 

1 
X 

22. (2-g) 

i(w-w’)+2voq2 1 (D-l)(i;-;)2 ’ 
(35) 

Now the frequency dependence of the first term is singular compared to 

the O(yi) or any further correction. So it is useful to smooth out the 

behavior by considering 
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@7(W) (w, k2,yo,~o,koJ’) = J 
+m 

-m 
dw’ ~(“l’(~,01,k2,~0,~o,ko.T), (36) 

which yields from (35) 

&(+w,k2 y 
-1 2 

’ v k ,T) 0’ 0’ 0 
= (-io+ vok ) Zli, 

where 

2 
y. ei(w+ iv0 k’)T-, 

ql= 1-t T 
/ 

dDcl 
Fm(q2/k;)qnanp(k)ql 

i(o + iv0 k2) MD -iwt v o(q2 + 6- r;,“) 

1 k2 
X 

2i;. (C-C) 

-iw+“o(2q2+k2) 
2- (D - I)$- ;;,2 

(37) 

(38) 

In a similar fashion, one may construct, to the limits of patience, 

any G@m) to an arbitrary order in yo. 

We turn now to the use of the renormalization group to give the 

G(nm) as sums over pieces of every order of the expansion in y 0 . 
The 

idea is to define, at some arbitrary point in k,w space, new values of 

the viscosity, call it Y and the mixing strength, call it y. Then we 

choose this point, called the renormalization point since we are renor- 

malizing our correlation functions there, so that the effective dimension- 

less parameter which determines the size of the terms in the expansion 

b Y. is small. Since the point at which we renormalize the parameters 
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of the theory is arbitrary, we must require the correlation functions 

to be independent of that point. 

To describe the renormalization scheme we will use, let us look 

first at @“,l)-l. When y. = 0 it is just -iw+ vok2. In general we 

expect the scale of the -iw and of the vok‘ to change independently. 

The renormalized g (1,1) 
R 

will be a function of W, k2, y, Y, kg, and T 

as well as the normalization point w = iw N, k”=q;. We can relate the 

overall magnitude of ??R - (1,1) and gw) by introducing Zi as 

@;‘1’)(w,k2,y, Y,kO,T,wN,q$ = .;I $‘,‘+ti.k2,Yo, Vo’kO,T?, (391 

where Zt is Independent of w and k2. Now require that 

w = iw N 

then Z1 is determined by 

Z,=~i~“,“~w,k2,~o,~o,ko,T)~1 . 
w = iw 

N 

k2 = q2 
N 

Zl clearly rescales the -iw term term in $aLW . Rescale the 

vok2 term by requiring 

(40) 

(41) 
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c2 ~a’J1)(w,k2,y,v,ko,T,WN,q~)-1 = z;l. , (42) 

0 = iw 
N 

k2=q; 

then the factor Z y which rescales the viscosity: v = Z v v 0’ 
is 

Zv = 1 a @7(1J1)(W,k2, y 
“0 ak2 

o, vo, kg, 6-l (43) 

w = iw N 

k”=q; 

To determine the resealed mixing strength y we turn to the fusion vertex 

which may be written as 

Aj@ rr,py(~.w; +y G2> w,)A~,,(&$ (;;,) , (44) 

where c=Gi+<2 and o=wi+02. By looking at (33) we are led to define 

y=Zy y. by 

kr 6 
a ff.PY pv z 

-iy 

2 D+1 * 
9N ii- zl = c2 =z;k2=q; (274 2 

w 
WI =0 -’ 2 =T;o-lWN 

A considerable simplification occurs if we choose qN = 0. Then Z1 = 1 

and, to the lowest order in y ;, z =I. 
Y 

Only the viscosity is renormalized 
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at this order in Yo. The factor Zv is a dimensionless function of 

WN 
, y, v, k. and T. It can depend only on the three dimensionless variables 

g = + (k;) 
D-414 

> (461 
” 

G (5x - 
kg, ’ 

(47) 

and 

q = v k2 T , 0 N (48) 

where we have introduced k2 N = a,/ v. The first of these variables is the 

analogue of the usual Reynolds number as discussed in some detail in 

Abarbanel (1978a). Carrying out the operation indicated in (33) we find 

to order y”, 

D2-D-2 

22 + 

4voq2 
3 , (49) 

(UN+ 2v09 ) 1 
which, by scaling q by G, and be shown to be a function of g, O, and 

~7 only. 

To guarantee that the physics is invariant under a change uN we 

need a condition on the way the g, o, and n dependences of the renormalized 

Gk”‘m’ 
are related. This is embodied in the statement 
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a - G(n,m) 
WN EhN (ya ci> yo, vo> kg> T) = 0, (50) 

which means that the full, unrenormalized G (n,m) , which is calculated 

directly as a power series in v. using the graphical rules given above, 

is independent of o 
N’ With our normalization condition Zf = 1, so 

G;‘m)C~i, 5, g, v, 0, rl, wN) = G(n’m)(wi, ki, yo, vo> kg, T) > 

where tensor indices are not shown. Noting that the derivative in (50) 

1s with yo. vo, o. k T fixed we have from the chain rule 

a 
a+B” UN KN+“ag $+(f-~)e&+(f-B)R+ x 

I 

G;‘m)(wi, ci, g, v,o,rl,wN) = 0, 

with 

A&, 0, n) = mN 
a I 

-g aw 
N 

yo, vo, kg, T fixed 

‘WN a 
Wg, o,,tl) = y a v 

WN 
YO’ Vo’ o’ k T fixed 

a 

=WN aWN logzv 
yoS vo, kg, T fixed 

(51) 

(52) 

(53) 

(54) 

(55) 
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Since D-4 
7 D-4 

g = v3/2 (Q =&UT’ 
N 

4 
” 

(56) 

;3& y. 

D-4 
4 

D+ZWN ’ e - 
z 4 “04 Y 

(57) 

Ak,u,v) = log z 
D+2 

Y - 4 B(g,a.rl) 
I 

. (58) 

To the order we have calculated Zy = 1 and from (49) we learn 

%.u,rl) = & F(o, rl) , (59) 

with -. 
F(o,r~) = i ;lDq 

J 

dDp rmW2’ 
- 
(2HjD 

r-7 
12, I 

+(D’-D-2)+&D’-D+1) T 1 

$ (D2-D-2)+82D(D-1), 1 (60) 

-r) 3-D/2 
= (1-e )u 

dDr 
- 

16D 
(2njD 

z(D2-D-2)+r2(D2-1x1) 1 
- qe -u$-D/2 dDr 

16D s MD 

;(D’-D-2)+r2(D2-D+i) 1 . (61) 
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Now we want to use 

a 
WN aw, = 

[I-Elk;+, 

akN 

(62) 

and the dimensional analysis indicated in Abarbanel (1978a) to bring the 

derivatives from aN to the scale of wave numbers ci. The dimensions 

of G (n, m) are w 
-1/2(m+3n) kD/2(2-n-m) leading to 

a ~a i a a a 
‘T-f- 

--_- 
1-B ag 1-B “% 

g (2-n-m) -“;i;;-vG- 4 1 
Ghm) 

R 
wi, @ k,g.v,m,k; = 0. (63) 

This has the solution 

i+wm k; > 

x <(2-n-m)D/4 
, 

where the effective g, V, (J, q satisfy 

dm’ - --- A@(U), E(u), fi(u)) 
du 

. B(o) = g 
l-B(g(u),C(u),fi(u)) ’ > 

(64) 

(65) 
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and 

1 d:(u) -1 -= 
z du 

. C(O)=v, 
I-B(E(u’, 5 (~1, f?(u)) ’ 

d:(u) -Ll 
- =-:w;so E(“)=,Je , du 

d4 (u’ - = -ii(u); so G(u) = qe 
-u 

du 
. 

(66) 

(67) 

(68) 

This is the key result of the renormalization group. It tells us how 

the correlation functions G (n,m) depend on the effective Reynolds number, 

g, the effective viscosity ?, the effective external scale 5 and the 

effective pulse time 3. The dimensionless parameter which determines 

the size of corrections to the unperturbed (that is, linearized) Navier- 

Stokes equation can be seen from (59) to be 6(-log 5) = g2(-log c) F(go, 5~) 

at wave number 5 k*, Orzag (1974) discusses a “local” Reynolds number 

(see his Section 3.1) which is clearly related to our G. What is impor- 

tant to note is that the relative magnitude of the non-linearity in the 

Navier-Stokes equation is dependent on the regime of wave number space 

one is exploring. 

The original expansion in yo, or more precisely in 

D-414 

g0 = -$ ($1 , 

y. 

(69) 

is a very doubtful busiuess.especially when the Reynolds number 



-25- FERMILAB-Pub-78/53-THY 

YO 
D-414 

RO = 312 - (k;) > 

“0 

(70) 

based on the external scale, becomes large. What we have done with the 

machinery employed here is to provide a mapping from go to another 

expansion parameter 6 whose size will be more under control. In the 

next section we will discuss the construction of the important correlation 

function v @,O) and make this mapping more explicit. 

Nextletus turn to the behavior of G(u). The equation for g(u) to 

3 
o(g ) reads 

dgb) - E - 4 g(ul - F(ffe -u r) emu) 
du 4’ (i+&) .m3 I 

with E -4-D. From this we find for z(u) = g(u)‘F(?~ ,?) 

d’%-U - -- 
du 

; + -& log F(E ,9) 
3 

We can study this at large and small u by using the properties of 

F(u,n) exhibited in (66) and (67). The large wave number limit E-+rn 

corresponds to u = -log 5 + -CO. In that limit o.n-co and 

rm(r2) , 

(71) 

(72) 

(73) 

so & log F(C,9) = 4 , (74) 
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which means 

G;(U) e e 2u + 0 . (75) 
U--CC 

The effective expansion parameter G(u) vanishes for very large 

wave number. That means physically that as we move into the far 

dissipative region the inertial term becomes totally unimportant. It 

provides corrections of order k 
-4 

to the behavior of the linearized 

Navier-Stokes equation which is. clearly dominated by viscous dissi- 

pation proportional to vok2. This makes excellent physical sense and 

is an important, albeit a bit obvious, result. As 5 is lowered (k2 

becomes smaller) we move into the inertial range and G(u) grows. The 

actual magnitude of G can be extracted from the solution to (78) which 

we will give shortly. We can investigate the other extreme limit t-0, 

u = - log 5 - + m before that. This is the important limit for the study of 

the final period of decay and makes contact with the work of the previous 

section. 

To study the kz small behavior of ?G we need information on 

Fm(k2/ki) near k2 = 0 to determine F(E,fl) as u-m. We will consider 

the two cases discussed before: 

Case S: lTm(0) + 0 

Case B -P: Fm(q2) = q2 hm(q2) ; hm(0) # 0 . 

(76) 

(77) 
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In Case S 

dDr 1 
- 
MD 

$ (D2-D-2) + r2 (D2-D+i) 
I 

(D2-D-2) + r2 D(D-1) II ,(78) 

so 

(79) 

and 
G(u) z e 

U-m 

(80) 

In the limit 5 = e -’ - 0 then, the effective expansion parameter is small 

for D> 2 and the use of the linearized Navier-Stokes equation for the 
O-2) 12 

final period of decay is justified. Corrections are of order (k’) 

in D space dimensions. 

InCase B-P,F(o,n) behaves as 

2-f dDr hm(r2) 

F(6,?) - -rl D e 
r2 ’ 

(81) 

U-m (2dD 

so 

and 

d@u) - G(u) _ c2 - -- 
du 2’ 

(8.3 

G(U) rr/ eeU. 
u--a 

(83) 
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So, in this case also, the effective expansion parameter goes to zero in 

the low wave number limit. Again the use of the linearized Navier- 

Stokes theory for the study of the final period of decay is justified. In 

the present instance (89) tells us that corrections to the linearized 

results are O(k’). 

Finally to trace the behavior of ?;(u) between the u- -m (k2 --a) 

and u-+03 (k2 - 0) limits just given, we may integrate (72) to learn 

S(u) = 
2 fu 

g F(ee-u ,u eTU) e2 
U 

TX 
(84) 

dx e2 F(cebx,r, e-“) 

For an appropriate choice of kk, which then determines g, V, c, and n 

given the input or physical parameters yo, vo, k. and T, one may 

establish that 6(u) remains small over the whole range of u, not only 

at u-&co where it must vanish. Different choices for ki represent 

different mappings from the physical parameters to g. V, CJ and q. Since 

we have arranged for the physics to be invariant under changes in k‘ 
N 

(or wN), we are free to choose that ki which yields the fastest con- 

vergence in a power series in G(u). 
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IV. CONSTRUCTING THE VELOCITY CORRELATION FUNCTIONS 

Now we wish to employ renormalization group methods to construct 

representations for the velocity-velocity correlation function y P./J) 

defined by 

G!“‘) (c, o w’ 
P- ’ 

> yo> VO>kO,T) 

= Aji(W ~‘2,0)(k2,~.~‘,Yo~~o,ko,T) 

=I dDx e 
-iT;. z+ iwt -iWIT 

e X 

x <xjG>t)Xa(O’ T)>, (85) 

which is related to Q (2ao) in (16) by a factor v2/4 0 * The general method 

has been outlined in Abarbanel (1978b) and Abarbanel, Bartels, Bronzan, 

and Sidhu (1975). The essentials will be repeated here. 

We want to write ~42’o)(k2,0,wt, yo, vo, kO,T) as 

@Lo)(k2 .o.~‘,Yo~~o. T) = 

where the dimensionless factor Z is a function of the dimensionless 

variables: 
2 D-4 

-2 2 

g0 = + (k’) , (87) 
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vk 
2 

0 xg=- , 
-iW 

x =” 
w 8 

7j = -iwT . 

FERMILAB-Pub-78/53-THY 

(88) 

(89) 

(90) 

(91) 

In perturbation theory 

2 = 1 +g z~o,x.~,?r) + O(g)... , (92) 

and we want to give a representation for 2 which allows us to go beyond 

perturbation theory. 

The first step is to introduce a renormalized viscosity, Y, and 

renormalized mixing strength, y , with normalization conditions general 

enough to allow us to probe the variations in all of the parameters above. 

From @“i)(k2,w,w’, y , o vo, kg, T) which is the scalar part of the x,‘ji 

correlation function to all orders in y. we make a renormalized 

5 w+k2 , O, ~1, g2, Y, o, n) which is related by a scale factor Zi as in (39) 

$+)(k’,w w’,g 
R , Y o n) = 2 , a 2 1 ~(i*i)(k2,c+~1.yo, VO,kO>T). (93) 

Note from (35) a common factor of (o-o’) -i in the terms of g(***) and that 

at y. ~= i, 
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i q&1) - 1 
7&l-d, c -iw’+v k 2 = 

0 . 

So let us require of (12) 
FR 

2 -1 
,o.w’,g,~,l),mlNI~N) 

I k2=q; 

w =iw 
N 

W’ = Xiw 
N 

(94) 

so 

a 
zl(Lg,~,m,x) = G 

~59?(L~)(k2 
-1 

,w ,w’,yo.ko>T) 
1 k’=q; 

(96) 

w =iw 
N 

where 
D-4 

g2 
2 4 

= (9;) 5 , 
II 

2 
9N 0 =a, 

2 
kO 

rl =0 NT, 

(97) 

(98) 

(99) 
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and 
2 

v9 N x=- . 
WN 

(100’ 

The renormalized viscosity is determined by 

(w -o~~~~“)(k2,L;,01,g,~,~,o, q;,mN)-’ 1 k”=q; 
=zlv. (101’ 

w =iw 
N 

cd’ =i)\w 
N 

with v=Z v 
” 0 we have 

a 
2 
ak 

& (w -w;:~(*J1)(k2,0,~t,yo,yo, ko,T)-’ 1 k’=q; 
= zyvo. (102) 

w =io 
N 

The evaluation of Z requires computing 5 (f,1) 
Y to some order in y 

0 
and then performing the derivative indicated in (102). 

Next we need a prescription for y. We will use that given above , 

namely 

kT Ly u,pT(r;10i;;lrw1.~2,W2)6pT 

k2 
-iy 

k2 = 0 = q; = q; 
D+1 * (403) 

(24 2 

iw 
N w =w = - =w 

122 2 
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As before the O(yz) correction to v vanishes and v= y. to that order 

with this normalization condition. 

In perturbation theory Z v is a power series in 

2 D-4 

2 2 

go = k3 (9;’ , 

vO 

with coefficients depending on X .o,v, and 

2 

xO 
- “OqN ~ 

WN 

(104) 

(105) 

Z v’ Z (evaluated at k2 = q$ 0 = iw 
N’ 

w’ =i)rw 
N 

) andx, the ratio 

g/g, = x= z-3’2, can be rewritten in terms of g, x, r7, o, A. The Y 

connection between g and go is especially important as it permits us 

to give for Zv, Z, and x non-perturbative expressions in go. 

To this end we need the following renormalization group functions 

a 
Aw(g,u,l).x,X) = wN 5 g (106) 

yo, vo, kg, T fixed 

Aq (g,u,v,x,V = 9; a 
g > 

yo, vo. kg, T fixed 

A0 (g,u,v,x,A’ = k; a 
-g 
ak; 

> 

yo, vo, T fixed 

(107) 

(1’38) 



AU - = Aw & log F+ (B 
g w - 1) x & log3 + 17 & log z , 

Aq+c/4 

g = 9ag 
A a log/?=+ (l+Bq)x; logx + 0% log% ) 

AO -= A 
g 

a log %” + B. x 2 log x - 
0 ag 

and 

where E = 4 -D and 
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and a 
AT kw,~>x,V = T ar g (109) 

yo, vo, k. fixed 

The chain rule then yields 

(110) 

(if11 

(112) 

This leads to 

. (114) 

YO’ 0 Y fixed 

a i+(l-Bw +BT)</4 

ag 
log~(g,u,~,x,x) = 

!?a (115) 

with 

~(g,o,I),x,U = (Aq+AO)(~-Bo+BT)+(Aw-AT)(~+BO+B ). 
9 

(116) 

When g = 0, r= 1 so we may integrate for 
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,ybJ,V,X.X) = exp If 

In precisely the same fashion we find for Z 
Y 

/ 

g 
Zv(g,o,rl,x,U = exp ~(g’,oJl,h) 

0 
dg’ B(g’,crJl,x) ’ 

where 

6 = (Bq+Bo)(l -Bw+BT)+(~u-~T)(i+BO+Bq) 

= B +Bq+Bo -B w T’ 

For Z(g,u,n,x,x) we need the renormalization group functions 

(Cw,cq,Co,CT) = 

From these we may construct 

g 
z = exp ~(g’m,x,h) 

dg’ A(g’,o,t7,x,X) ’ 

where 

1 . (117) 

(118) 

(119) 

(120) 

. (121) 

y. , v. fixed 

(122) 

~‘(Ws,a,x,U = (co+cq)(l - Bw+BT)+ (C 
w 

- CT)(l+ Bo+ Bq) . (123) 

These equations are quite general and have as their main virtue 

the boundary condition that Z,Zy, %+ 1 when g-0. To proceed it is 

necessary to make some approximation. We will continue the spirit of 
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our previous work and restrict ourselves to the one loop approximation 

for the A, B, and C functions. To that order in g2 we have 

A =-t g + a(x, 0, r), V g3 , 

i3 = - b(x, ur r7, M g2, 

and 

B -BT= 
w - 6 (x, or u1, A) g2 , 

e = c(x, 0, rl, A) g2 . 

From the general expressions we then find 

and 

where 

x= I-< 

( ) 

i ^) I+$ 12 

, 

g1 

-b 

C 

2 

i ) 

z 

z= I-&$ 8 

g1 

g~(x,wLx) = 4a(x ‘, q h) . 
a 2 I 

Because 3; Zi312 at this order in g2 with our normalization 

(124) 

(125) 

(126) 

(127) 

028) 

(129) 

(130) 

(131) 
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a=? b-t;, 
2 

3b 

(132) 

(133) 

As shown in our previous paper the ratios a/b, 6/a and c/a are 

independent of x, 0, q, and A. At any given order of approximation for 

the renormalization group functions that will not be strictly true, however 

one may wish to impose it, and we will henceforth treat them as constants. 

We are left with a pair of implicit equations which determine g and 

x asfunctions of y 
0 and v. -- the physical parameters governing the 

system. Noting that gN and uN are arbitrary we write 

and 

so 

3b/4a 

-b/2a 

(134) 

(135) 

(136) 

and x is determined by 
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-b’2a iv k 
2 

0 x - 
w . (137) 

Knowing x as a function of ~~,~~,~=k~/k~,ri=-i~T, ad i= o’/w allows 

us to determine 
c/b 

and thus @2ao+k2,w,o’,y s o vO,kO,T) from (86). The task thus 

reduces to finding the function a(x, O, 0, A) and the ratios b/a and b/c. 

It is important to note that all reference to the normalization point 

variables q N 
and o 

N and renormalized quantities has disappeared at 

this stage. 
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V. SUMMARY AND CONCLUSIONS 

In this article we have treated the decay of homogeneous, isotropic 

turbulence using renormalization group techniques to quantitatively 

evaluate the importance of non-linear effects in the Navier-Stokes 

equations. We began by discussing the linearized Navier-Stokes equations 

which, following previous authors, e. g. Saffman (1967) we presumed were 

applicable in the final period of decay. {This procedure was a posteriori 

justified by the renormalization group analysis that followed. } The 

turbalent motion is generated by random forces, F.(z, t), operating over 
J 

a time interval -T.ctsT 1 f’ These we took to be gaussian with zero mean 

and correlation function 

2 

< Fj(g, t) Fp (;, T )> = 4 ” AjP (V)r(k$- 3”) a(t - +(Ti+ t)B(Tf - t) , 

where 
Aja(V) = 6. -Ojo,/v2 , 

9 

expresses the solenoidal aspect of the force (the fluid is incompressible, 

YO represents the magnitude of the force, and f(ki x2) gives the 

disbribution of force-force correlations in space. The fourier transform 

F,(k’/k;) = 
/ 

D 
d xe 

-ii;* 2 - 
I-(( x2) , 

plays an important role. 

After making the connection between the specification of turbulent 

motion by giving these random forces or by giving random boundary 
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conditions on the velocity field at t = T f’ we considered the behavior of 

the velocity correlation function 

Q~~‘“)(~,t,+) = / dDxe-i~.‘<vi(X:t)VJ(O,r)> , 

for t, T > Tf and for -Ti < t, T < Tf. In the first case we showed, 

using the linearized Navier-Stokes equation, that the energy spectrum 

function E(k, t) 

E(k,t)a kD-’ c I$(~“) Lt,t) I 
P=i 11 

behaves as 

E&t) - 
kD-l 

k2+0 
r,(k’). 

When the velocity correlation function is analytic at k. = 0, (Batchelor and 
J 

Proudman (1956)), E(k)- kD+’ so FM(k2)- k2 for small k2. When the 

vorticity correlation function is analytic, (Saffman (1967)), E(k) - kD-‘, 

so FM(k2)- constant for small k2. Since the latter is what one expects 

from equipartition (which should hold since we are in the final period of 

decay and the forcing has been off for a long time), it is physically to be 

preferred. Saffmsn also pointed out that in this case E(k) = c k D-l 
+. . . 

with c a dynamical invariant. Now TM(O) f; 0 is just the situation 

expected on physical grounds in Abarbanel (1978a, b) and discussed as 

“Model B” by Forster, Nelson, and Stephen (1977). If it is correct, then 
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in the final period of decay, the energy falls off as t 
-312 

. An experiment 

was proposed to measure this which avoids the possible periodicity 

problems of simple grid turbulence. 

After all this we turned to the renormalization group to give a 

quantitative estimate of the effective dimensionless expansion parameter 

(Reynolds number) for the series ofcorrections due to the non-linearity 

in the Navier-Stokes equation. We found that in each of the cases above 

that for k2+m the expansion parameter went rapidly to zero. This is 

expected and natural since in the deep dissipation region the vk2 of 

dissipative effects should dominate the inertial transfer mechanism. 

Perhaps more surprising was that in each case the effective Reynolds 

number also goes rapidly to zero for k2 - 0 as long as the number of 

space dimensions is greater than two. With this in hand we proceeded 

to present the renormalization group method for constructing the full 

velocity correlation function. That method relies on a Reynolds number 

expansion of the renormalization group functions and leads to a non- 

perturbative determination of the correlation functions themselves. It 

explicitly has the correct k2-0 and k2-m limits and provides a 

systematically improvable interpolation between them. 

Perhaps the main achievement here and in the previous papers, 

Abarbsnel (1978 a, b) is the use of the renormalization group to provide 

a quantitative handle on the importance of the non-linearity in a stochastic 

system. Clearly the method is general and will find applications beyond 
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turbulent flow. In turbulence one may in a qualitative fashion charac- 

terize the non-linearity (3. V) vj as being rather “smooth” so that it 

becomes unimportant relative to the viscous term Y v2 vj for large wave 

numbers and provides a controllable k-0 limit in physical space 

dimensions. It is numerically important only when the fluid is driven 

strongly, so vj is large, and then, namely in the inertial range, the 

control one has over the k2-+ 0 and k2 -m limits allows one to use 

renormalization group methods as an interpolation procedure. In a 

more explicit fashion one may note that the actual expansion parameter 

is essentially RL(kL)-t, in three dimensions,with R 
L the Reynolds number 

based on some length L. When R 
L 

is large it is more or less equivalent 

to k small, which behavior is universal. A priori it is difficult to know - 

just howg’eneral a feature this will be in non-linear stochastic problems, 

but one may optimistically expect it will not be uncommon. 
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Fig. 1: 

FIGURE CAPTION 

The elements for the graphical representation of 

perturbation theory in y,, for the velocity correlation 

functions. A dotted line represents an anti-velocity, 

Fj(c,w), and a solid line, a velocity G;(~,w). The 

algebraic expressions for Gr’l), Gf”) and the 

fusion vertex are given in the text as equations (31), 

(32), and (33) respectively. 
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